Data-Free Area Detection and Evaluation for Marine Satellite Data Products

نویسندگان

چکیده

The uncertainty verification of satellite ocean color products and the bias analysis multiple data are both indispensable in evaluation products. Incidentally, often have missing information that causes methods mentioned above to be difficult evaluate these effectively. We propose an method based on data-free area. objective this study is quality with respect integrity continuity. First, we use improved Spectral Angle Mapper, also called ISAM. It can automatically obtain optimal threshold value for each class objects. Then, ISAM, perform spectral mining first-level Yellow Sea Bohai obtained from Geostationary Ocean Color Imager (GOCI), Moderate Resolution Imaging Spectroradiometer (MODIS) Land Instrument (OLCI). In manner, quantitative results related areas obtained. findings indicate product OLCI completeness GOCI MODIS striking similarities their or visualization metrics. Moreover, a concomitant phenomenon ocean-covered objects apparent area temporal spatial distribution characteristics. two characteristics subsequently explored further analysis. adopted help enrich content evaluation, facilitate research cloud detection algorithms understand composition regional marine proposed has wide application value.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of Data Mining Algorithms for Detection of Liver Disease

Background and Aim: The liver, as one of the largest internal organs in the body, is responsible for many vital functions including purifying and purifying blood, regulating the body's hormones, preserving glucose, and the body. Therefore, disruptions in the functioning of these problems will sometimes be irreparable. Early prediction of these diseases will help their early and effective treatm...

متن کامل

Evaluation of LISS-III Sensor Data of IRS-P6 Satellite for Detection Saline Soils (Case Study: Najmabad Region)

Soil Salinity has been a large problem in arid and semi arid regions. Preparation of such maps is useful for Natural resource managers. Old methods of preparing such maps require a lot of time and cost. Multi-spectral remotely sensed dates due to the broad vision and repeating of these imageries is suitable for provide saline soil maps. This investigation is conducted to provide saline soil map...

متن کامل

A suitable data model for HIV infection and epidemic detection

Background: In recent years, there has been an increase in the amount and variety of data generated in the field of healthcare, (e.g., data related to the prevalence of contagious diseases in the society). Various patterns of individuals’ relationships in the society make the analysis of the network a complex, highly important process in detecting and preventing the incidence of diseases....

متن کامل

Criteria of selecting satellite data for studying land resources

In recent years, acquiring information of remote sensing data, especially satellite data has excessively increased and several methods are presented in order to improve the quality of remote sensing studies in earth sciences. It is possible to manage many projects and provide different types of thematic maps in a short period of time, and a low cost by utilizing satellite data and GIS method. R...

متن کامل

metrics for the detection of changed buildings in 3d old vector maps using als data (case study: isfahan city)

هدف از این تحقیق، ارزیابی و بهبود متریک های موجود جهت تایید صحت نقشه های قدیمی سه بعدی برداری با استفاده از ابر نقطه حاصل از لیزر اسکن جدید شهر اصفهان می باشد . بنابراین ابر نقطه حاصل از لیزر اسکنر با چگالی حدودا سه نقطه در هر متر مربع جهت شناسایی عوارض تغییر کرده در نقشه های قدیمی سه بعدی استفاده شده است. تمرکز ما در این تحقیق بر روی ساختمان به عنوان یکی از اصلی ترین عارضه های شهری می باشد. من...

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Remote Sensing

سال: 2022

ISSN: ['2315-4632', '2315-4675']

DOI: https://doi.org/10.3390/rs14153815